
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]
https://dx.doi.org/10.22161/ijaers/3.11.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 120

Software Complexity Prediction by Using Basic
Attributes

 Rasha Gaffer. M. Helali

Sudan University of Science and Technology, Sudan

Abstract— Software complexity is one of the important
quality attribute that affect the success of software.
Predicting such attribute is a difficult task for software
engineers. Current used measures for computing complexity
are not sufficient. Data mining can be applied to software
data to explore useful interesting patterns. In this paper we
present a simple data mining based prediction model to
predict software complexity based on some basic attributes.
The article starts by considering the correlation between
different features that describes software code structure then
selecting some of these features to be used for complexity
prediction. Results reveal the ability to use branching count
feature as strong predictor of complexity.
Keywords— Software complexity, LOC, McCabe, halstead,
branch count.

I. INTRODUCTION
Software complexity is “a natural byproduct of the
functional complexity that the code is attempting to enable”
[1]. In literature, software complexity has been defined
differently by many researchers [2]. Z use defines software
complexity as the difficulty to maintain, change and
understand software. Others view it as difficulty to develop,
test, debug and maintain [2].Therefore, no standard
definition exits for the same in literature. However,
knowledge about software complexity represents an
indicator of development, testing, and maintenance efforts,
defect rate, fault prone modules and reliability [2].With
multiple system interfaces and complex requirements, the
complexity of software systems sometimes grows beyond
control, rendering applications overly costly to maintain and
risky to enhance [1]. The complexity is affected by many
factors former to software development [3]. Understanding,
predicting and resolving complexity of software are critical
tasks that affect the success of software.
Software complexity can be measured by Direct Measures
which is also known as internal attributes and Indirect
Measures which is also known as external attributes. Direct
Measures are measured directly such as Cost, effort, LOC,
speed, memory. Indirect Measures cannot be measured
directly. Example - Functionality, quality, complexity,
efficiency, reliability, maintainability [4]. The common used
complexity measures are:

- The cyclomatic complexity v(G) has been
introduced by Thomas McCabe in 1976.The
McCabe complexity is one of the more widely -
accepted software metrics, it is intended to be
independent of language and language format.

- The McCabe’s [5] software complexity introduces
the concept of Cyclomatic Complexity. It combines
the number of flow graph edges, nodes and
predicate nodes to represent the complexity. The
Cyclomatic Complexity of a source code is the
linearly independent paths count through the source
code.

- The Halstead [6] software complexity measures the
complexity by counting number of operators and
operands in software. It measures the software's
ability to understand and estimates the effort
required to develop a software algorithm. Halstead
metrics are difficult to calculate and it is very hard
to count the distinct and total operators and
operands in a software program.

- Metrics Suite for Object Oriented Design [7]
proposed by Chidambaram Kamerer to measures
complexity of object oriented software based on
coupling and coherence between class.

Recently, many researches focused on predicting complexity
because complexity prediction can help in estimating many
other quality attributes like testability and maintainability.
The main goal of this paper is to build predictive model by
using data mining techniques to find out which attribute/s
can help predicting complexity more than others. The
subsequence sections are organized as follows: section II
contains what had been done in the area of complexity
prediction. Section III describes the proposed predictive
model and used data set. Then the following sections
highlight analysis, results and validation. Finally, conclusion
is presented.

II. RELATED WORK

A number of studies investigate software complexity either
as attribute to be predicted or as predictor to other attributes.
Software complexity commonly used as indicator to fault
prone class/modules. Moreover, several studies focused on
the relationship between software complexity and software
reliability and maintainability. More complex software is,

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]
https://dx.doi.org/10.22161/ijaers/3.11.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 121

less maintainability and reliability is Usha Chhillar and
Sucheta Bhasin, pointed out that there is a relationship
between complexity and possibility of faults [8]. Graylin
et.al.Constructed a model to find correlation between
McCabe’s Cyclomatic Complexity (CC) and lines of code
(LOC). Their model successfully predicts roughly 90% of
CC’s variance by LOC alone. D. Francis Xavier Christopher
and E. Chandra[9], addressed software Requirements
Stability Index Metric (RSI) that helps to evaluate the overall
stability of requirements and also keep track of the project
status. Their study proposes Multi-criteria Fuzzy Based
approach for findingOut the complexity weight based on
Requirement Complexity Attributes such as Functional
Requirement Complexity, Non – Functional Requirement
Complexity, Input Output Complexity, Interface and File
Complexity. The advantage of their model is that it is able to
estimate the software complexity early which in turn predicts
the Software Requirement Stability during the software
development life cycle.
N. J. Pizzi et.al. [10] Investigated a computational
intelligence based strategy, random feature selection, as a
classification system to determine the subset of software
measures that yields the greatest predictive power for
module complexity. Sabharwal.et.al.In[11]discussed how to
use fuzzy logic based approach to predict complexity.On the
same direction M S. Dattathreya, and H Singh used Fuzzy
logic techniques for developing, modeling and analyzing the
software complexity prediction metric. The authors propose
five non-technical factor metrics based on the current
software development process to predict future Army
Vehicle software complexity [3].
Some studies moved towards computing software
complexity differently, Henry and Kafura [3] provide the
measure of couplings between modules in terms of number
of parameters, global variables and function calls. In[13]
authors introduce The Entropy software complexity measure
based on the average information content of each operator in
a software program's source code. An attempt was made by
Jingqiu Shao and Yingxu Wang [3] to models the software
complexity based on the cognitive functional size of the
software. Although, many studies considered software
complexity, still much research is required. Above literature
leads to a conclusion that we need to find a way to use
current available measures of software attributes to give an
indicator to how software complexity is. We describe the
proposed software complexity prediction model in a step
wise manner as follows:

1- Data set and feature selection
2- Find correlation between software attributes.
3- Applying data mining techniques to predict

complexity.

III. COMPLEXITY PREDICTIVE MODEL
Our analysis is divided into two main steps. The first step is
to determine the software attributes (metrics) that can yield
acceptable predictability then find the correlation between
these attributes to select the most related attributes to
complexity. The second step is using the selected attributes
to build prediction models. These two steps/ phaseswere
presented in the following two subsections.

- Feature selection
The study investigates the ability to use some basic attributes
that describe software code to predict its expected
complexity. The features/ attributes that are suggested
simply including LOC, number of operatorsand number of
operands, branch count, an estimation of complexity and
used programming Language. We tried to find dataset
including these features to be used for prediction purpose.
The data used in this study is retrieved from online public
repository PROMISE [14]. The original data is made
available by Software Research Laboratory of Bogazici
University [15]. The utilized data sets areembedded software
products implemented in C. It contains the measurements of
21 static code attributes (complexity metrics) and 1 defect
information (false/true) of tens tohundreds of modules.
Module attributes were collected using “Prest Metrics
Extraction and Analysis Tool” [15]. The collected attributes
contains:
%
% 1.loc : numeric % McCabe's line count of code
% 2.v(g) : numeric % McCabe "cyclomatic
complexity"
% 3.ev(g) : numeric % McCabe "essential
complexity"
% 4.iv(g) : numeric % McCabe "design complexity"
% 5.n: numeric % Halstead total operators + operands
% 6.v: numeric % Halstead "volume"
% 7.l: numeric % Halstead "program length"
% 8.d: numeric % Halstead "difficulty"
% 9.i: numeric % Halstead "intelligence"
% 10.e: numeric % Halstead "effort"
% 11.b: numeric % Halstead
% 12.t: numeric % Halstead's time estimator
% 13.lOCode: numeric % Halstead's line count
% 14.lOComment : numeric % Halstead's count of
lines of comments
% 15.lOBlank : numeric % Halstead's count of blank
lines
% 16.lOCodeAndComment: numeric
% 17.uniq_Op: numeric % unique operators
% 18.uniq_Opnd: numeric % unique operands
% 19.total_Op: numeric % total operators
% 20.total_Opnd: numeric % total operands
% 21: branch Count : numeric % of the flow graph

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]
https://dx.doi.org/10.22161/ijaers/3.11.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 122

% 22.defects:{false,true} % module has/has not one or
more
% % reported defects

According to suggested features only 18 attributes were used
from the above list. We omit 4 attributes (design complexity,
essential complexity, and b and time estimator t). It is
important to note that all attributes were measured by using
traditional known metrics (LOC, McCabe and Halstead).
Our goal here is to figure out which of the above attributes
can be used to predict complexity. Spearman’s Correlation is
done between these attributes table “1” below shows
correlation results.

Table.1: Correlation results

 Complexity v(g)
r-value p-value

LOC (McCabe's line
count)

.889 0.00

Design complexity .826 0.00

total operators +
operands

.869 0.00

Volume .872 0.00

Length -0.832 0.00

Difficulty .861 0.00

Intelligence .733 0.00

Effort ..883 0.00

Loc code (Halstead's
line count)

.569 0.00

Locomments .635 0.00

Loblank .676 0.00

LOC and comments -0.062 .170

uniq_Op .887 0.00

Uniqu_oernd .843 0.00

total_Op .869 0.00

total_Opnd .860 0.00

Branch_ count .999 0.00

Defects .169 0.00

By considering r- value it is obvious that the most related
attributes to complexity estimation which measured by
McCabe are branch count, LOC and unique operators. In
contrast, 2 attributes are not related to complexity such as
Length whichmeasured by Halstead and (LOCand
commands)measure that appears from negative r value
resulting from correlation process. So, both of negative
attributes are omitted from selected features. Finally, the rest
of attributes (16 attributes) were fed to predictive model.It is
important to note that for prediction purpose we assign two
classes for complexity the first class is “high”if complexity
value is greater than 20, second class is “Low” if complexity
is less than 20.

- Proposed predictive model
The proposed predictive model as mentioned above consists
of two main phases: feature selection phase and analysis/
prediction phase. Data mining generally used to extract
previously unknown patterns help to improve or even predict
new knowledge[16]. Data mining are integrated in analysis /
prediction phasethat classifyingsoftware data as high or low
complexity based on labeled training data. If complexity
estimation is less than 20 it labeled as low, if greater than 20
labeledhigh. Decision tree classification algorithm C5.0 is
used to perform classification process.The decision trees
algorithms are classification algorithms for use in predictive
modeling. They build a data mining model by creating a
series of splits in the tree [16].The C5.0 algorithm was
chosen for the following reasons. Firstly, it’s simplicity.
Secondly, it has boosting feature that mean using multiple
classifiers instead of one to provide better classification
accuracy. The output of this phase is three sets of software
data in addition to set of classification rules. Figure 1 bellow
shows the proposed prediction model.

Fig.1: Prediction model

Total number of records fed to classifier is498records.
Records are randomly split into two sets, a training set and a
testing set. The training set used to create the mining model.
The testing set used to check model accuracy.Trainingdata
represents40% of total data/records. Results are listed in the
following section.

IV. ANALYSIS AND RESULTS

Results confirm the existence of strong relation between
branch count and complexity. C5.0 algorithm generates set
of classification rules learned from training data as follows:

- If branch count between 1and 20 then complexity
class is low.

Feature
selection

Classification
process

Software

data

Predicted

complexity

Rules

Feature
Analysis

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]
https://dx.doi.org/10.22161/ijaers/3.11.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 123

- If branch count is greater than 20 then complexity
will be high.

- Special cases if branch count in [27 32 33 34 41 43
49 59 63 71] also complexity class Low

So, branch count can work as a good predictor to software
complexity. Predication accuracy, prediction precision, and
recall rate are commonly used metrics to evaluate the binary
prediction models [14]. Classification accuracy is estimated
by used mining algorithmequal to 100%. Table “2”presents
the results after applying C5.0 to data.

Table.2: Prediction Results Details

 High Low

Predicted high 24 0

Predicted Low 0 474

Accuracy =acc =100%
Probability of false alarm = pf = 0%
Probability of detection = pd = recall = 474/474=1
Precision = prec=474/474= 1

For validation purpose six programs are selected and tested
according to the above rules. The selected programs are:
stack,Gzip, print tokens, and arraysorting, binary search and
replace programs. Branch count ismeasured for the five
programs and also complexity estimated by using McCabe
metric then rules are checked for validation.According to
Validation results we can say branch count predict
complexity correct 100%. Table 3 shows validation results.

Table.3: Validation Results

Program
name

Branch
count

Complexity
v(G)

Class Check

Stack 2 18 Low correct

Gzip 100 1260 high correct

Array
sorting

2 6 Low correct

replace 28 92 high correct

Print
tokens

61 79 high correct

Binary
search

2 4 low correct

V. CONCLUSIONS

In this paper, a simple data mining based complexity
prediction model were presented. Model depends on some
attributes measured using traditional metrics from code
structure.The most important aspect of the model was to
figure out which attribute could be used as predictor to
software complexity. Results find strong relation between
complexity and branch count feature.

REFERENCES
[1] Application Analytics Software,What is Software

Complexity:http://www.castsoftware.com/glossary/soft
ware-complexity.

[2] Chhillar, Usha, and SuchetaBhasin. "Establishing
Relationship between Complexity and Faults for
Object-Oriented Software Systems." IJCSI
International Journal of Computer Science Issues 8.5
(2011).

[3] Dattathreya, Macam S., and Harpreet Singh."Army
Vehicle Software Complexity Prediction Metric-Five
Factors."

[4] Bhatnagar, Anurag, NikharTak, and Shweta Shukl. "A
LITRERATURE SURVEY ON VARIOUS
SOFTWARE COMPLEXITY MEASURES."
International Journal of Advanced Studies in
Computers, Science and Engineering 1.1 (2012): 1.

[5] McCabe, T.J. A Complexity Measure, IEEE Trans. On
Software Engg., SE-2, 4, 1976, pp. 308-320

[6] Halstead, M.H. Elements of Software Science, New
York: Elsevier North Holland, 1977.

[7] Jamali, Seyyed Mohsen. "Object oriented metrics." A
survey approach Technical report, Department of
Computer Engineering, Sharif University of
Technology, Tehran, Iran (2006).

[8] Chhillar, Usha, and SuchetaBhasin. "Establishing
Relationship between Complexity and Faults for
Object-Oriented Software Systems." IJCSI
International Journal of Computer Science Issues 8.5
(2011).

[9] International Journal of Software Engineering &
Applications (IJSEA), Vol.3, No.6, November 2012
doi : 10.5121/ijsea.2012.360 8 101 prediction of
software requirements stability based on complexity
point measurement u sing m ulti – c riteria fuzzy
approach d. francisxavierchristopher 1 and e.chandra

[10] N. J. Pizzi, "A Computational Intelligence Strategy for
Software Complexity Prediction," Neural Networks,
2006.IJCNN '06. International Joint Conference on,
Vancouver, BC, 2006, pp. 4727-4733.
doi: 10.1109/IJCNN.2006.247127

[11] S. Sabharwal, R. Sibal and P. Kaur, "Software
complexity: A fuzzy logic approach," Communication,
Information & Computing Technology (ICCICT), 2012
International Conference on, Mumbai, 2012, pp. 1-6.

[12] Harrison, Warren. "An entropy-based measure of
software complexity." Software Engineering, IEEE
Transactions on 18.11 (1992): 1025-1029.

[13] S.W. QingWANG, L.I. Mingshu, Software defect
prediction, J SoftwMaintEvol: Res Practice, 19 (7)
(2008), pp. 1565–1580

[14] S. J. Sayyad and T. J. Menzies, The PROMISE
Repository of Software Engineering Databases, School

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]
https://dx.doi.org/10.22161/ijaers/3.11.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 124

of Information Technology and Engineering,
University of Ottawa, Can-ada,
http://promise.site.uottawa.ca/SERepository.

[15] Graylin, J. A. Y., et al. "Cyclomatic complexity and
lines of code: empirical evidence of a stable linear
relationship." Journal of Software Engineering and
Applications 2.03 (2009): 137.

[16] Yousef, Ahmed H. "Extracting software static defect
models using data mining." Ain Shams Engineering
Journal 6.1 (2015): 133-144.

